
NASA Contractor Report 187604

ICASE Report No. 91-58

ICASE
THE ENERGY DECAY IN SELF-PRESERVING

ISOTROPIC TURBULENCE REVISITED

Charles G. Speziale
Peter S. Bernard

Contract No. NASI-18605

July 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

Langley Resesrch Center
Hamplon, Virginia 23665-5225

,,0

0 _n,.O

I -,-b-

r_

L_

0

Z o. _,.j
LL?

JL) v

_J

02_ _
43_-4

_-_ LL_ _

I ¢_
_:_ I _'_

i





THE ENERGY DECAY IN SELF-PRESERVING ISOTROPIC

TURBULENCE REVISITED

Charles G. Speziale*

Institute for Computer Applications in Science and Engineering,

NASA Langley Research Center,

Hampton, Virginia 23665

Peter S. Bernard

Department of Mechanical Engineering,

University of Maryland,

College Park, Maryland 20742

ABSTRACT

The assumption of self-preservation allows for an analytical determination of the

energy decay in isotropic turbulence. Batchelor (1948), who was the first to carry out a

detailed study of this problem, based his analysis on the assumption that the Loitsianskii

integral is a dynamic invariant - a widely accepted hypothesis that was later discovered

to be invalid. Nonetheless, it appears that the self-preserving isotropic decay problem

has never been reinvestigated in depth subsequent to this earlier work. In the present

paper such an analysis is carried out, yielding a much more complete picture of self-

preserving isotropic turbulence. It is proven rigorously that complete self-preserving

isotropic turbulence admits two general types of asymptotic solutions: one where the

turbulent kinetic energy K _,- t -1 and one where K _ t -_ with an exponent a > 1 that is

determined explicitly by the initial conditions. By a fixed point analysis and numerical

integration of the exact one-point equations, it is demonstrated that the K ,-_ t -1 power

law decay is the asymptotically consistent high-Reynolds-number solution; the K _ t -_

decay law is only achieved in the limit as t _ oo and the turbulence Reynolds number

vanishes. Arguments are provided which indicate that a K _ t -1 power law decay is the

asymptotic state toward which a complete self-preserving isotropic turbulence is driven at

high Reynolds numbers in order to resolve the imbalance between vortex stretching and

viscous diffusion. Unlike in previous studies, the asymptotic approach to a self-preserving

state is investigated which uncovers some surprising results.

*Research supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665-5225.





1. INTRODUCTION

Despite the fact that isotropic turbulence constitutes the simplest type of turbulent

flow, it is still not possible to render the problem analytically tractable without the

introduction of additional hypotheses. The idealization of self-preservation - wherein

the two-point double and triple longitudinal velocity correlations are assumed to admit

self-similar solutions with respect to a single length scale L(t) - has served as a useful

hypothesis since its introduction by yon Karman and Howarth (1938). In another classic

paper that followed, Batchelor (1948) studied the energy decay in self-preserving isotropic

turbulence in considerable detail. He concluded that the only complete self-preserving so-

lutions that were internally consistent existed at low turbulence Reynolds numbers where

the turbulent kinetic energy K ,v t-_/2 - a power law consistent with the final period

of decay. Batchelor (1948) also found a self-preserving solution to the Karman-Howarth

equation in the limit of infinite Reynolds numbers for which Loitsianskii's integral was an

invariant. This solution - wherein L(t) is the integral length scale A and K ,,_ t -1°IT -

was put forth by Batchelor as the only complete self-preserving solution at high Reynolds

numbers. Of course, additional partial self-preserving solutions were shown by Batchelor

to exist in other Reynolds number regimes.

Objections were later raised against the use of the Loitsianskii integral as a dynamic

invariant: at high Reynolds numbers this integral can be shown to be a weak function of

time (see Proudman and Reid 1954 and Batchelor and Proudman 1956). Saffman (1967)

proposed an alternative dynamic invariant which yields a K .._ t -6/S power law decay in

the infinite Reynolds number limit (see Hinze 1975). While the results of Batchelor and

Saffman formally constitute complete self-preserving solutions to the inviscid Karman-

Howarth equation, it must be kept in mind that they only exhibit partial self-preservation

with respect to the full viscous equation. Namely, there is self-preservation only for the

range of energy containing eddies with integral length scale A (here, A/A < < 1 where A is

the Taylor microscale). These two solutions have been widely accepted in the turbulence

literature as the predicted decay laws for self-preserving isotropic turbulence at high

Reynolds numbers.

Implicit in the analysis of Batchelor (1948) is the existence of a complete self-preserving

solution consistent with high Reynolds numbers - namely a K .'_ t -1 power law decay.

The collapsing length scale L(t) for this full self-preserving solution is necessarily the

Taylor microscale (i.e., for any complete self-preserving solution of the viscous Karman-



Howarth equationwemust haveL 0¢ A). This solution - which was postulated earlier by

Dryden (1943) - was dismissed by Batchelor on the grounds that Loitsianskii's integral

was not a dynamic invariant. While this result by Dryden has been mentioned subse-

quently in the literature (c.f. Hinze 1975, Monin and Yaglom 1975 and Korneyev and

Sedov 1976), it has largely been disregarded by the turbulence community. The reason

for this appears to be two-fold: (a) a K .v t -I power law decay has not been observed

in the most accurate isotropic decay experiments, and (b) since A/A _ 0 as Re _ oc,

doubts can be cast on the suitability of the Taylor microscale as the collapsing length

scale of the energy containing eddies.

Recently, George (1987, 1989) revived this issue concerning the existence of complete

self-preserving solutions in isotropic turbulence. In an interesting paper he claimed to

find a complete self-preserving solution, valid for all Reynolds numbers, in which the

kinetic energy decayed as K --, t -_ with a determined by the initial conditions. George

(1987) - who based his analysis on the dynamic equation for the energy spectrum rather

than on the Karman-Howarth equation - made no explicit mention of the complete self-

preserving K _ t -1 solution. Strictly speaking, the solution presented by George was an

alternative self-preserving solution to that of Karman and Howarth (1938) and Batchelor

(1948) since he relaxed the constraint that the triple longitudinal velocity correlation be

self-similar in the classical sense.

The purpose of the present paper is to address the issue of complete self-preservation

in an effort to clarify the following basic questions:

(1) What is the complete self-preserving solution for isotropic turbulence at high

Reynolds numbers,

(2) What detailed predictions does this solution yield for the energy decay, particularly

during the initial approach to a state of complete self-preservation, and

(3) Is this solution compatible with the results of physical experiments and alternative

theoretical approaches?

In so far as the first two points are concerned, it will be shown unequivocally that the

only complete self-preserving solution that is consistent with a high-Reynolds-number

isotropic turbulence has a K ..- t -1 asymptotic power law decay. Unlike previous studies,

this is demonstrated in a straightforward manner based on a fixed point analysis of the

one-point equations. This analysis leads to an interesting interpretation of the physical

significance of a K .-- t -1 power law decay and allows us to examine small departures

from a state of complete self-preservation. The detailed predictions of this complete self-
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preservingsolution - which, to the best of our knowledgehavenever beenexaminedin

depth in the literature - will be comparedwith the resultsof physical experimentsand

alternative theoretical approachesin the sectionsto follow.

2. THEORETICAL BACKGROUND

We will considerisotropic turbulence governedby the incompressibleNavier-Stokes

equations
Oui Oui Op
0----[-+ uj-- = _h + vV2ui (1)

Oxj Oxi

Oul

= o (2)
where ui is the velocity vector, p is the pressure and v is the kinematic viscosity. The two

point double and triple longitudinal velocity correlations, denoted by f(r, t) and k(r, t),

respectively, are defined in the standard way:

f(r,t) = u(x,t)u(x + r,t) (3)

k(r,t) = u2(x't)u(x + r,t)
(4)

where u is any component of the velocity, x and x+r are any two spatial points separated

by a distance r =1 r I in the direction of u, and an overbar denotes a spatial average (c.f.

Hinze 1975). For isotropic turbulence, f and k satisfy the Karman-Howarth equation

- (o.:

which is obtained directly from the Navier-Stokes equations. The turbulent kinetic energy

1 UK = 5ui i is a solution of the differential equation

/_r = -e (6)

where

= l] 5diO.] i _ // a} 2 (7)

is the turbulent dissipaton rate, wi is the vorticity vector and w _ is the enstrophy. The

turbulent dissipation rate is a solution of the differential equation

7 S r'--d 7 e2
- 3,]g '_VR_)? 15 a_ (S)



where

s_= __ LaT3Jr=o (9)
I. J

a =_4[04/1 (lO)
LaT4Jr=o

K 2 (I0_K) '/2Rt=--, A= -- (11)vc

are the velocity derivative skewness, the coefficient of the enstrophy destruction, the

turbulence Reynolds number, and the Taylor microscale, respectively. Equations (6) and

(8) - which are rearranged versions of those that appear in Karman and Howarth (1938)

and Batchelor (1948) - are obtained, respectively, by setting r = 0 in (5) and in the

equation obtained by differentiating (5) twice with respect to r. Since SK = Sg(t) and

G = G(t) are directly related to the correlations f and k (which cannot both be obtained

from the Karman-Howarth equation (5)) it is clear that the problem of isotropic decay

is not closed. In order to achieve closure, additional assumptions must be made such as

the one of complete self-preservation that will be discussed in this paper.

For an isotropic turbulence to be self-preserving in the sense of Karman and Howarth

(1938) and Batchelor (1948), we must have

f(r,t) =/(r/L) (12)

k(r,t) = [c(r/L) (13)

where L = L(t) is a uniquely specified similarity length scale. For it to exhibit complete

self-preservation, all scales of the turbulence - namely, the full range of 0 __ r < c_

- must decay according to (12) and (13) (partial self-preservation is satisfied if (12) -

(13) only apply to some restricted range of 0 < r < rm_). We will focus our attention

on complete self-preserving solutions in the analysis to follow. In view of the identity

(Batchelor 1948)

pv]
c = -10vK La_2J_=o (14)

it follows from (11) that

LOT2j_=0= -1. (15)



Hence, for any complete self-preserving isotropic turbulence, we must have

LA--_]"(O) = -1 (16)

from which it can be concluded that

L o( A (17)

since /"(0) is a constant. It therefore follows that the Taylor microscale is the only

similarity length scale that can yield complete self-preserving solutions to the full viscous

equations of motion for isotropic turbulence.

Without any loss of generality for a complete self-preserving isotropic turbulence we

may set L = A and then substitute (12)- (i3) into (9)- (10), respectively, to get

SK = --tc"(O) = constant

G =/i_'(O) = constant

where a prime denotes a derivative with respect to r/- r/)_. Consequently,

= SKo, a = ao (18)

where the notation (')o denotes the initial value. The substitution of (18) into (6) and

(8) then yields the transport equations

(19)

(20)
7 r--e 2 7 _2

for complete self-preserving isotropic turbulence. This is a closed system for the deter-

mination of K and _ once Ko, Co, SKo and Go are provided. To simplify the subsequent

presentation, the quantity Go - which is the coefficient of the destruction of enstrophy

term in (20) - will henceforth be referred to as the "palinstrophy coefficient" following

the terminology used by Lesieur (1990). Accordingly, the assumption of complete self-

preservation is seen to lead to closure in the following sense: if initial conditions for the

skewness and the palinstrophy coefficient are provided - in addition to initial conditions

for K and c - then the energy decay can be calculated explicitly for all later times.

For complete self-preserving isotropic turbulence, the Karman-Howarth equation (5)

takes the form

,.._ d] [2K _4d(r/4/¢) K 4d (___)



or, equivalently,

10]+ ¢ + - (22)

after replacing A using (11), (19) and (20) with R_ = (-_)1/2_/u = ff20-/3 ,Pl/2_t. Equation

(22) will have a solution if R_ = constant as first noticed by Dryden (1943); this is a

K ,,_ t -1 power law decay. However, (22) also has solutions where R_ = R_(t) when

separability is invoked. The separability condition implies that each side of (22) is equal

to zero individually, yielding differential equations from which explicit solutions for fi

and k may be determined depending on the choice of SKo and Go. These solutions were

first discovered by Sedov (1944) and later compared with experimental data by Korneyev

and Sedov (1976). The particular case for which Go = 3 so that ] is Gaussian - which

formally corresponds to the final period of decay - was considered in detail by Bernard

(1985). We will briefly examine (22) later to establish the consistency of the present

results with those of previous studies. However, our analyses will be based on a fixed

point analysis and direct numerical integration of (19) - (20). This will allow us to

consider small departures from a self-preserving state as will be demonstrated later.

3. FIXED POINT ANALYSIS AND NUMERICAL RESULTS

In order to carry out a fixed point analysis of (19) and (20), we will combine these

equations into a single transport equation for the turbulence Reynolds number Rt. Since,

2K [( K 2
/}, - _ (23)

V£ p,£2

it follows that

Rt - 2K 7 t---K 7 GoK
u 3_-5SK°k/R'u + -_ u" (24)

If the transformed dimensionless time v - defined by the relation dT = (e/K)dt - is

introduced into (24), we obtain the equation

dR----A_=Rt(7G°-2dr

The fixed points of (25) are obtained by setting dRt/dT = 0 which yields the equation:



where(')oo denotesthe equilibrium value in the limit as r --+ CO. Equation (26) has the

solutions:

Rt. = 0 (27)

7
for igGo < 2, and

k /

for _Go > 2. It is a simple matter to show that the fixed points (27) - (28) are stable

nodes that attract all initial conditions Ko and Co. It is also evident from (28) that in order

to have an equilibrium high-Reynolds-number isotropic flow fieldi" under self-preserving

conditions it is necessary that Go '_ x/17-_.

The fixed point Rt_¢ = 0 is associated with asymptotic solutions of K and e that

satisfy the differential equations

k = (29)
7 e 2

= --i_Go-K. (30)

Equations (29)- (30) have the exact solution

( le°t_ -_ (31)K = Ko l + a Ko]

( le°t) -_-' (32)e=eo l +aKo]

where c_ = 1/(_Go - 1) > 1. For large eddy turnover times eot/Ko >> 1, we have

K,,_t -_ (33)

Rt "_ t -"+1 (34)

(and, hence, K goes to zero faster than Rt), so it follows that (31) - (32) can only be

asymptotic solutions in the limit as K ---+ 0 and t ---+oo. Therefore, within the framework

of complete self-preservation, an asymptotic power law decay where K _ t -_ (with

c_ > 1) is associated with the fixed point Rt¢o = 0 and is only formally consistent with

the final period of decay. This is borne out in the subsequent computations.

During the final period of decay there is considerable evidence (Batchelor and Townsend

1948a) indicating that f(r/) = exp (-r/2/2) (i.e., a Gaussian) in which case (10) implies

t By a high Reynolds number isotropic turbulence we mean the case where Rt >> 1; for a low Reynolds

number isotropic turbulence, R, = O(1).



that Go = 3 and, consequently, that a = 5/2. The same result is also reached by

assuming constancy of the Loitsianskii integral

/5u 2 r4f(r,t)dr = constant (35)

during decay, which appears to be an acceptable assumption for the final period• In

particular, from (12) it follows that (35) is equivalent to (c.f. Hinze 1975)

u-_As f0 _ r/4S(r/)dr] = constant

so that (11) and (36) imply that

(36)

K712

= constant• (37)es/2

When (37) is combined with (31) and (32) it follows that a = 5/2 - the celebrated

Batchelor (1948) result•

Now we will show that the non-zero fixed point (28) is consistent with high-Reynolds-

number isotropic turbulence. The substitution of (28) into (19)- (20) yields the equations

which have the exact solution

K = -£ (38)

£2

= -2)-_ (39)

(  ot)-IK= Ko l + Ko] (40)

( £ot -2e = £o I + Ko] (41)

(namely, a t-' power law decay for the turbulent kineticenergy). Since itcan be shown

that (seeBatchelor and Townsend 1948b)

G = 30v o_
7 e/K (42)

it follows that G is a ratio of turbulent to dissipative time scales. It is a simple matter

to show that (see Hinze 1975)

o__x_o___
vox_ ax, v f_¢ _4E(_,t)d_

"_ (43)
wkwk f_ _2E(_, t)d_
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where E(x,t) is the energy spectrum and _; is the wavenumber.

preservation, E(x, t) scales with the Taylor microscale, from which it follows that

For complete self-

and, hence, that

axj Oxj V £

wkwk _ A--_ ,-_ _-_ (44)

G ,,_ constant (45)

However, (43) is a correlation dominated by the high wavenumbers

(47)
G" I2K ¢

Equations (45) and (47) appear to be contradictory; however, they are not, since in a

K ,,, t -1 power law decay

Rt = constant. (48)

Furthermore, Rt = constant resolves the imbalance between the two terms on the right-

hand side of the dissipation rate equation (20) since the first term (i.e., the vortex stretch-

ing) is initially of O(v/_,) while the second term (i.e., the viscous destruction) is of O(1).

This leads us to the following physical interpretation: A K ,,_ t -1 power law decay is

the asymptotic state toward which a self-preserving isotropic turbulence is driven at high

Reynolds numbers in order to resolve the fundamental imbalance between vortex stretching

and viscous diffusion. In the process of resolving this imbalance, compatibility with Kol-

mogorov scaling is achieved for the small scale correlations. Since this consistency with

Kolmogorov scaling - which, on physical grounds should be satisfied at high Reynolds

numbers - is achieved when _Go "_ _ > 2, it is clear that the non-zero fixed point

(28) is the asymptotic solution for high-Reynolds-number self-preserving flows.

We will now examine numerical solutions of (19)- (20) for complete self-preservation.

With the possible exception of the recent work of Bernard (1985), we have not seen

detailed numerical results published on the decay of K and e in self-preserving isotropic

turbulence. An examination of these results will amplify the points discussed in this

and

as shown earlier.

(i.e., small scales) and it would therefore seem more reasonable that E(_;, t) should scale

with the Kolmogorov length scale IK =-- 123/4/C-1[4. If this is the case, then

0aL_ 0xj 11

WkWk "" -_K (46)



sectionand will shedsomeinterestingnew light on how the self-preservationassumption

compareswith experiments. In Figures l(a) - (c), the decay of the turbulent kinetic

energy is shownfor three initial turbulence Reynolds numbers (Rto= 1000,5000and
10,000) and three different initial conditions for G (i.e., C_ 2 = 1.92,5.0, and 8.0 where

C_2 = _Go). For these calculations, as well as the ones to follow, K* -= K/Ifo, t* =

eot/Ko and the skewness

SKo = 0.5 (49)

which is in close proximity to the values obtained from physical experiments in this range

of Reynolds numbers. From these figures it is clear that the self-preserving solution has

an initial transient where the kinetic energy is fairly flat; then the kinetic energy begins

to asymptote from above to a power law decay as evidenced by a straight line on these

logarithmic plots. Two conclusions can be drawn from these results. First, for C_2 < 2

and //to >> 1, the kinetic energy does not asymptote to a t -_ power law decay until

after an extremely large number of eddy turnover times by which time the turbulence

has decayed to a tiny fraction of its initial intensity. Second, for C_ 2 > 2, the kinetic

energy asymptotes to a t -1 power law decay within a few eddy turnover times; however

unless C_ ,,_ x/_to (consistent with Kolmogorov scaling), the turbulence intensity will

drop precipitously before this asymptotic state is achieved.

To further illustrate these points, the computed turbulent kinetic energy is compared

with its corresponding asymptotic power law decay for increasing values of C_2 in Figures

2(a) - (c) which are for initial turbulence Reynolds numbers of 1000, 10,000 and 100,000,

respectively. It is clear from these figures that for C_2 < 2, the turbulent kinetic energy

does not reach its asymptotic power law decay even after 100 eddy turnover times! How-

ever, for C_2 sufficiently larger than 2, the turbulent kinetic energy asymptotes to a t -1

power law decay within a few eddy turnover times. This can be seen even more vividly in

Figure 3 where a* _-_d(log K')/d(log t') is plotted as a function of log t" for Rto = 1000.

If there is an asymptotic power law decay, this derivative will asymptote to the exponent

of the decay law. It is clear that for C¢2 = 7, an exponent of 1 is approached quickly;

however, for C, 2 = 1.83 and 1.92 (initial conditions which ultimately yield a power law

decay with an exponent of approximately 1.2 and 1.1, respectively) an asymptotic state

is not achieved even after 100 eddy turnover times. Furthermore, for C_ < 2 and large

initial turbulence Reynolds numbers Rto :>:>1, there is a precipitous drop in the turbulent

kinetic energy before a power law decay is achieved; this is due to the early transient

when vortex stretching causes a considerable rise in the dissipation (see Figures 4 (a) -

10



(b)).
Since the self-preserving solutions for C_2 < 2 only asymptote to a power law decay

in the limit as K _ 0 and t --, oo, it is reasonable to associate them exclusively with

the final period of decay, Experiments tend to indicate that the final period of decay is

entered for Rt < 1 wherein the exponent of the decay is approximately 2.5 (c.f. Hinze

1975). As noted earlier, this decay law is obtained asymptotically for self-preserving

isotropic turbulence if C,_ = 1.4 - a result obtained by invoking Loitsianskii's invariant.

In Figure 5, the decay of the turbulent kinetic energy when C,_ = 1.4 is shown for the

initial turbulence Reynolds numbers Rto= 0.25 and 1.0. It is clear from these results

that for Rto< 1 the solutions begin to asymptote to the power law decay (31) with an

exponent _ = 2.5. Since C, 2 must equal 1.4 during the final period of decay - and, since

C, 2 is a constant for self-preserving isotropic turbulence - it follows that the entire decay

process from high Reynolds number initial conditions to the final period of decay cannot

be described within the framework of complete self-preservation. This conclusion results

from the fact that the only consistent self-preserving solution at high initial Reynolds

numbers yields a K ,-, t -1 power law decay wherein Rt asymptotes to a constant - a

state of affairs that precludes the description of the later stages of decay. Furthermore,

the value of C,2 = 1.4, which describes the final period of decay, yields unphysical results

for the early stages of a high Reynolds number isotropic turbulence (i.e., it predicts an

early time transient where there is a precipitous drop in the turbulent kinetic energy;

see Figure 6). In order to describe the entire decay process of a high Reynolds number

isotropic turbulence, G as well as SK must vary with time - a possibility that is precluded

by the assumption of self-preservation which renders them to be constant.

4. COMPARISONS WITH ALTERNATIVE THEORETICAL ANALYSES

AND EXPERIMENTS

The results derived in the previous section are consistent with those of Batchelor

(1948) for low turbulence Reynolds numbers; however, our high Reynolds number asymp-

totic solution yields K ,-, t -1 whereas in Batchelor's solution K ,,_ t -1°/7. The reason

for this difference is simple: as alluded to earlier, Batchelor also found the K ,-, t -1

solution but dismissed it as a viable result since Loitsianskii's integral was not a dy-

namic invariant. Interestingly enough, an earlier experimental study by Batchelor and

Townsend (1948b) yielded results that were far more suggestive of a K ,-_ t -1 rather

11



than a K ,_ t -1°17 power law decay. Despite the fact that Batchelor (1948) states that

the K ,,_ t -1°/7 decay law is a complete self-preserving solution, in reality it is only a

partial self-preserving solution corresponding to the inviscid Karman-Howarth equation

(see Hinze 1975). It is our view that since the K ,,_ t -1 asymptotic decay law is a formal

solution to the full Karman-Howarth equation, it should not be dismissed unless it is in

incontrovertible contradiction of experiments or other exact theoretical results.

As mentioned earlier, Dryden (1943) postulated a K ,,_ t -1 power law decay based

on a direct analysis of the Karman-Howarth equation. He observed - as is evident from

(22) - that the Karman-Howarth equation will allow for self-similar solutions if

R_ = constant (50)

which yields K ,-_ t -1 as a direct consequence of (6). However, there are other temporally

varying solutions to (22); complete self-preservation only requires that RA asymptote to

a constant. Sedov (1944) studied solutions of (22) obtained by applying the separability

constraint

N - ] =0 (52)

which renders R_ = RA(t) consistent with (19) - (20). Solutions to (51)- (52) have

not been studied in great depth subsequent to Sedov (1944) who showed that ](q) =

M s s __ z s(_' 2'- 2 ) where M is the confluent hypergeometric function and _' = _Go - _.

Batchelor (1948) expressed concern over the fact that this solution leads to a unique

determination of both ] and k; however, although he suspected that the Sedov solution

was unphysical, he stated that he was "not able to find any definite anomalies". In

the limit as R_ -_ 0 it is clear that (51) is a direct consequence of the Karman-Howarth

equation. Consequently, it is not surprising that the Sedov solution for the final period of

decay yields physically interesting solutions as recently demonstrated by Bernard (1985).

However, it will now be shown definitively that the Sedov solution yields unphysical

results at high turbulence Reynolds numbers. In figure 7, the results of a numerical

solution of (51) for ] are shown for a variety of values of Go ranging from 3 to 60. For

Go = 3 it can be shown analytically that ] = exp(-r/2/2) yielding an energy spectrum

of the form

1 ,4

(53)

12



wheren* = _A and E* = E/u2),. Equation (53) is obtained from the identity

lffE*(x') = _ ](y)(_'r/sin _*r / - _'2r/2 cos n'r/)&/ (54)

(c.f. Batchelor 1953). This result - which has E*(,;*) ,,_ x** at low wavenumbers and

has E*(x*) decaying exponentially at high wavenumbers - is consistent with established

results on the final period of decay (c.f. Hinze 1975). However, for sufficiently large Go,

it is a simple matter to show from (51) that

/(_) "-" _-_ (55)

for r/ >> 1. This explains why ](r/) is so slow to asymptote to zero when Go > 10 in

figure 7. In fact for

Go > 2

it follows from (54) and (55) that E*0¢* ) becomes singular. From (28) it can then be

concluded that the Sedov solution will yield a singular energy spectrum when

Rt_ > 0

It is thus clear that the Sedov solution yields untenable results, at high Reynolds numbers,

for the double and triple two-point longitudinal velocity correlations.

The major deficiency with the approaches of Dryden and Batchelor - as well as that

of Sedov - lies in the use of the self-similar Karman-Howarth equation (22) which does

not allow for the treatment of small departures from a state of complete self-preservation.

Such small departures can be characterized by the perturbations

s_ = SUo+ 6su(t) (56)

G=Go+SG(t) (57)

where II6SK II/SKo << 1, II6o II/do <<1 and 5SK(t),SG(t) _ 0 as t _ oo. The

substitution of (56) - (57) into (6) and (8) yields the governing equations for small

departures from a state of self-preservation. If we denote 5K and 5c as the departures

from the self-preserving solutions K and _ obtained from (19) - (20), it follows that for

the perturbations (56)- (57) we will have

Jl 6K I[ [I5_[I
<<I, --<<i

IIg II II_II
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due to the fact that (19)- (20) have fixed points that are stable nodes (c.f. Guckenheimer

and Holmes 1986). Consequently, (19) - (20) will yield an excellent approximation for

isotropic decay when there are extremely small departures from a state of complete self-

preservation. In contrast to this nice behavior, the Karman-Howarth equation becomes

indeterminate when subjected to infinitesimal perturbations from a self-preserving state.

Hence, it appears that the one-point equations (19) - (20) form a broader basis for the

analysis of the energy decay of self-preserving isotropic decay than does (22).

The general solution to the complete self-preserving isotropic decay equations (19) -

(20) at high Reynolds numbers is shown schematically in figure 8 (this is for the physically

significant case where Rto> Rto_ so that the turbulence Reynolds number decays). There

is an early time transient (region AB) where the turbulent kinetic energy is flat; it is

eventually followed by the asymptotic region CD where K -'_ t -1. These two regions are

connected by the overlap region BC. The initial transient AB evolves on the Kolmogorov

time scale V/-U-/e during which time there is a precipitous drop in the turbulence Reynolds

number (see figure 9). On the other hand, the overlap region BC evolves on the turbu-

lence time scale K/e; in this region the turbulence Reynolds number Rt becomes close to

Rtoo, approaching it asymptotically from above. As a direct consequence of the perturba-

tion analysis discussed above, the overlap region BC can be set into strong approximate

agreement with the asymptotic approach to a state of complete self-preservation. These

results have a direct bearing on how the complete self-preserving solution compares with

physical experiments as we will soon see.

It is widely believed that a K ,-_ t -1 asymptotic decay law is in violation of experi-

mental data for isotropic turbulence. This experimental data (see Uberoi i963, Kistler

and Vrebalovich 1966, Comte-Bellot and Corrsin 1966, 1971, and Warhaft and Lumley

1978) has yielded power law decays with exponents varying from 1 to 1.4 with a mean of

approximately 1.25. However, great caution must be taken in using this data to dismiss

the possibility of a K --_ t -1 asymptotic power law decay at high Reynolds numbers since

most of this data is for a limited number of eddy turnover times (typically for eot/Ko < 4).

If the self-preserving solution is examined for this same limited number of eddy turnover

times it follows that the resulting solution can be fitted to an excellent degree of approx-

imation by a power law decay with exponents in the range of 1 to 1.4 depending on the

initial conditions; the lower the Reynolds number, the longer the solution takes to reach

an asymptotic state and the larger the exponent is during the early stages of decay (see

Figures 10 (a)- (c)). Consequently, if one examined in isolation the self-preserving solu-

14



tions for the first few eddy turnover times (with the short early time transient omitted),

one could erroneouslyconcludethat there wasan asymptotic power law decaywith an

exponent in the range of 1 to 1.4 dependingon the initial conditions; in reality, all of
thesesolutionsareasymptotingto a t -1 power law decay. The solutions shown in Figures

10 (a) - (c) correspond to the overlap region BC shown in Figure 8 and, hence, can be

associated with the asymptotic approach to a state of complete self-preservation. An

argument has been raised recently by Walker and Corrsin (1985) and Walker (1986) that

the physical experiments may not go far enough to see a t -1 power law decay. Unless

the initial turbulence Reynolds number is extremely large, an asymptotic state may not

be achieved in the first few eddy turnover times. In this regard it is interesting to note

that the only extremely high-Reynolds-number experiment (i.e., Kistler and Vrebalovich

1966) and large-eddy turnover time experiment (Walker 1986) did measure a K _ t -1

asymptotic power law decay. Consequently, existing experiments cannot rule out the

possibility of a K ,-, t -1 asymptotic power law decay at high Reynolds numbers and

do not warrant the dismissal of the complete self-preserving solution discussed herein.

Furthermore, Rosen (1981) recently derived a t -1 asymptotic power law decay based on

alternative ideas from statistical mechanics.

Now, we will address the interesting controversy generated recently by George (1987,

1989). He claimed to find complete self-preserving solutions - with the Taylor microscale

as the similarity length scale - that exist for all turbulence Reynolds numbers. These

solutions were characterized by an asymptotic power law decay where the exponent is

determined by the initial conditions. George arrived at this alternative self-preserving

solution by relaxing the classical similarity constraint (13). He argued that the normal-

ization of the two-point triple velocity correlation

T(r,t) = u2(x,t)u(x + r,t) (58)

by (_-7)a/2 to form k(r, t) is arbitrary since its one-point contraction T(0, t) --_ u a is zero.

(This stands in contrast to the formulation of f(r, t) which is obtained by normalizing the

two-point double velocity correlation with its one-point contraction u2). Consequently,

George argued that constraint (13) should be replaced with the alternative constraint

T(r,t)

where w(t) is a suitable weighting function. Then - from the definition of SK in equation
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(9) and the Karman-Howarth equation (22) - insteadof the constraints

R_ = constant, SK = constant (60)

which renders a t -1 power law decay, we get the constraints

R_SK = constant, R_wK -3/2 = constant (61)

which allows for the possibility of an alternative decay law within the general framework

of complete self-preservation. From (61) it follows that

S K O( /i_t -1/2 (62)

and that

w (x K3/2R_ 1/2, (63)

which shows, incidentally, that w cannot be chosen arbitrarily. Since the proportionality

D1/2 __ and since G still remains a constant Go during theconstant in (62) must be OKon, to

decay - this alternative self-preservatlon leads to the decay equations

/'( = -e (64)

7 _e R1/2 e2 7 _ c: (65)
3v7i- °K° 'o 7? i-ic;° 

instead of (19)- (2O). Equations (64)- (65) yield the closed form solution for the energy

decay

1 eot'_ -_If = Ko 1 + _K--_o/ (66)

where

This is indeed a power law decay with an exponent that depends on the initial conditions

as claimed by George (1987, 1989).

Although we do feel that George raised some interesting issues - and made a seem-

ingly valid point concerning the arbitrariness of the normalization of the two-point triple

velocity correlation - it is our opinion that there is a problem with this alternative

self-preserving solution. By virtue of (61), George's alternative scaling renders a zero

skewness in the limit of infinite turbulence Reynolds numbers. Experiments indicate
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that the skewnessis an absoluteconstantof order one at extremely high Reynolds num-

bers (see Van Atta and Antonia 1980). Furthermore, a direct physical consequence of a

vanishing skewness SK is the occurrence of zero transfer and, hence, no energy cascade.

This can be seen easily from equation (59) which can be re-written as

T(r,t) c¢ K3/2Rtl/2T (_)

which implies that the transfer T(r, t) ---+0 as R_ ---+ co. Vanishing transfer in the limit

of infinite Reynolds numbers is an untenable physical result and hence this alternative

self-preserving solution is not acceptable for high-Reynolds-number isotropic turbulence.

Finally, a few comments are in order concerning the implications of these results

for turbulence modeling. In the commonly used turbulence models, the dissipation rate

equation is modeled as
_2

(6s)

for isotropic decay, where C_2 is a constant (c.f. Launder and Spalding 1974, Speziale

1991). Equation (68) is derived by invoking Kolmogorov scaling for G which requires

that

G = ClOt + C_ (69)

where C1 and C2 are constants; an equilibrium hypothesis is then made by which C1 =

3g_Sg so that the leading order part of the destruction of dissipation term annihilates

the vortex stretching term in (8) yielding (68). In contrast to (68), the complete self-

preserving solution has a dissipation rate transport equation of the general mathematical

form
_2 _2

= - 17 (70)

where C¢2 and C_3 are constants. Equation (70) can be also derived based on Kolmogorov

scaling (69) when departures from equilibrium are allowed wherein C_ 7L _SK. The

addition of the unbalanced vortex stretching term in (70) allows for a better treatment

of departures from equilibrium in several ways. First, as shown earlier in Figures 10 (a) -

(c), the self-preservation model allows for the description of the initial stages of isotropic

decay where the exponent of the decay law can vary mildly with the initial conditions -

a feature observed in physical experiments. On the other hand, the more commonly used
1

model (68) predicts a universal decay law where K _ t - _vTga-r-'for all Rto and all t > 0.

Second, the self-preserving solution can accommodate the limit of zero viscosity. In this
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limit, it is a simplematter to showthat (20) predicts a finite time enstrophyblow-up at
the critical time

tc-7S o o (71)

is the initialenstrophy. In Figure ll(a),the time evolution of the enstrophywhere _,_a

corresponding to the complete self-preservingsolutionisshown fora varietyof increasing

R,o; it isclearthat an enstrophy crisisispredicted for R,o >> i which eventually leads

to a finitetime enstrophy blow-up in the limit as v --+0. These resultsare in excellent

qualitative agreement with results obtained from EDQNM as illustrated in Figure 11(b)

taken from Lesieur (1990). While the issue of a finite time enstrophy blow-up is still

being debated by the turbulence community (c.f. Pumir and Siggia 1990), one thing is

clear: the enstrophy grows dramatically when u = 0. In contrast to the results shown in

Figures 11 (a) - (b), the commonly used dissipation rate model (68) erroneously predicts

that the enstrophy is conserved in the inviscid limit, i.e. that

w 2 -- constant (72)

when u = 0. It thus appears that the complete self-preserving solution allows for a

better treatment of non-equilibrium isotropic turbulence that could be of future use in

the development of improved turbulence models.

5. CONCLUSIONS

The energy decay for complete self-preserving isotropic turbulence has been re-examined

from a basic theoretical and computational standpoint. Several interesting conclusions

can be drawn from these results:

(1) The nonlinear differential equations for the energy decay have two fixed points -

Rtoo = 0 and Rtc¢= a3-As(-_Go49 - 2)2/S_:o • The former fixed point is only achieved in the

limit as t _ oo and hence is associated with the final period of decay. Consistent with

the Batchelor (1948) result, a K ,-_ t -5/2 power law decay is obtained when Loitsianskii's

invariant or the Gaussianity of ](r/) is invoked.

(2) The non-zero fixed point Rtc¢ -- '$6-_i_o135(7 _ _ 2)2/S_.o is approached within a few

eddy turnover times and gives rise to a K ,-_ t -1 asymptotic power law decay. It is the

high-Reynolds-number asymptotic solution for a complete self-preserving isotropic tur-

bulence. This solution appears to have been prematurely dismissed by Batchelor (1948)
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purely on the grounds that Loitsianskii's integral was not an invariant - a constraint

which was later learnedto beviolated in isotropic turbulence when Rto >> 1.

(3) The structure of the high Reynolds-number self-preserving solution during the

first few eddy turnover times was examined in detail. By a perturbation analysis, it was

argued that these solutions can serve as an approximation for the asymptotic approach

to a state of complete self-preservation. It was found that, depending on the initial

conditions, the early time solutions could be fitted with a power law decay which has an

exponent varying from 1.0 to 1.4 - a range of values that is compatible with existing

experimental data. Consequently, existing experiments cannot rule out the possibility

of a complete self-preserving solution with a K ,-_ t -1 asymptotic power law decay at

high Reynolds numbers. In fact, this asymptotic decay law was found recently in the

experiments of Walker (1986).

(4) Since the assumption of complete self-preservation requires that G be constant

- and since for high-Reynolds-number isotropic turbulence _G > 2, whereas for low-

Reynolds-number isotropic turbulence rG < 2 - it is clear that the entire process of

isotropic decay from high Reynolds number initial conditions to the final period of decay

cannot be described by the theory. The alternative conclusion drawn by George (1987,

1989) arose from the use of a new scaling for the two-point triple velocity correlation that

rendered a time dependent skewness where SK _ R_ 1/2. However, this type of asymptotic

behavior for the skewness wherein SK -+ 0 as R, --+ oo is physically inconsistent since it

yields zero energy transfer in the infinite Reynolds number limit.

Within the framework of self-preservation, the physical origin of a K --_ t -1 power law

decay becomes clear: it is the asymptotic state toward which a high-Reynolds number

isotropic turbulence is driven in order to resolve an O(R_ 12) imbalance between vortex

stretching and viscous diffusion. The resolution of this imbalance also yields compatibility

with Kolmogorov scaling. Results were presented which indicate that the complete self-

preserving solution yields a better description of non-equilibrium isotropic turbulence

than the commonly used turbulence models. It is also interesting to note that when

the self-preserving assumption is extended to homogeneous shear flow, a production-

equals-dissipation equilibrium can occur - preceded by a transient where K and e grow

exponentially - as recently shown by Bernard and Speziale (1990). It thus appears that

the theory of self-preservation in homogeneous turbulence has many interesting features

that have not yet been fully understood and are worthy of further study.
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Figure 1. Decay of turbulent kinetic energy in complete self-preserving isotropic turbu-

lence for initial turbulence Reynolds numbers Rto = 1000,5000 and 10,000: (a) C_ 2 =

1.92, (b) C, 2 = 5, and (c) C, 2 = 8.
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Figure 1. Decay of turbulent kinetic energy in complete self-preserving isotropic turbu-

lence for initial turbulence Reynolds numbers Rio = 1000, 5000 and 10,000: (a) C_ =

1.92, (b) C,_ = 5, and (c) C_ = 8.
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Figure 1. Decay of turbulent kinetic energy in complete self-preserving isotropic turbu-

lence for initial turbulence Reynolds numbers Rto= 1000,5000 and 10,000: (a) C_2 =

1.92, (b) C, 2 = 5, and (c) C, 2 = 8.
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Figure 2. Decay of turbulent kinetic energy for a variety of initial conditions on G

(C_ 2 = _Go): -- self-preservlng solution; - - - asymptotic solution K .-_ t -_ where

a= (C, 2-1) -1 for C_ < 2and a= 1 for C_2 > 2. (a) Rto= 1000, (b) Rto= 10,000

and (c) Rto = 100,000.
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Figure 2. Decay of turbulent kinetic energy for a variety of initial conditions on G

(C, 2 = _Go): -- self-preserving solution; - - - asymptotic solution K -,, t -_ where

a= (C, 2-1) -1 for C_2 < 2and a= 1 for C, 2 >_ 2. (a) R,o = 1000, (b) Rio = 10,000

a,nd (c) R,o = 100,000,
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Figure 2. Decay of turbulent kinetic energy for a variety of initial conditions on G

(C_ 2 = _Go): _ self-preserving solution; - - - asymptotic solution K ,.o t -_ where

a= (C_ 2-1) -1 for C_2 <2and a= 1 for C_2 > 2. (a) Re,, = i000, (b) Rto= 10,000

and (c) Rio = 100,000.
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Figure 4. Decay of self-preserving isotropic turbulence for C_2 = 1.83 and Rto = 100,200

and 400: (a) turbulent kinetic energy, and (b) turbulent dissipation rate.
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Figure 6. Decay of turbulent kinetic energy in self-preserving isotropic turbulence for
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